Groupwise Maximin Fair Allocation of Indivisible Goods
نویسندگان
چکیده
We study the problem of allocating indivisible goods among n agents in a fair manner. For this problem, maximin share (MMS) is a well-studied solution concept which provides a fairness threshold. Specifically, maximin share is defined as the minimum utility that an agent can guarantee for herself when asked to partition the set of goods into n bundles such that the remaining (n− 1) agents pick their bundles adversarially. An allocation is deemed to be fair if every agent gets a bundle whose valuation is at least her maximin share. Even though maximin shares provide a natural benchmark for fairness, it has its own drawbacks and, in particular, it is not sufficient to rule out unsatisfactory allocations. Motivated by these considerations, in this work we define a stronger notion of fairness, called groupwise maximin share guarantee (GMMS). In GMMS, we require that the maximin share guarantee is achieved not just with respect to the grand bundle, but also among all the subgroups of agents. Hence, this solution concept strengthens MMS and provides an ex-post fairness guarantee. We show that in specific settings, GMMS allocations always exist. We also establish the existence of approximate GMMS allocations under additive valuations, and develop a polynomial-time algorithm to find such allocations. Moreover, we establish a scale of fairness wherein we show that GMMS implies approximate envy freeness. Finally, we empirically demonstrate the existence of GMMS allocations in a large set of randomly generated instances. For the same set of instances, we additionally show that our algorithm achieves an approximation factor better than the established, worst-case bound.
منابع مشابه
Democratic Fair Allocation of Indivisible Goods
We study the problem of fairly allocating indivisible goods to groups of agents. Agents in the same group share the same set of goods even though they may have different preferences. Previous work has focused on unanimous fairness, in which all agents in each group must agree that their group’s share is fair. Under this strict requirement, fair allocations exist only for small groups. We introd...
متن کاملFair Division of a Graph
We consider fair allocation of indivisible items under an additional constraint: there is an undirected graph describing the relationship between the items, and each agent’s share must form a connected subgraph of this graph. This framework captures, e.g., fair allocation of land plots, where the graph describes the accessibility relation among the plots. We focus on agents that have additive u...
متن کاملX Fair Enough: Guaranteeing Approximate Maximin Shares
We consider the problem of fairly allocating indivisible goods, focusing on a recently-introduced notion of fairness called maximin share guarantee: Each player’s value for his allocation should be at least as high as what he can guarantee by dividing the items into as many bundles as there are players and receiving his least desirable bundle. Assuming additive valuation functions, we show that...
متن کاملA The Unreasonable Fairness of Maximum Nash Welfare
The maximum Nash welfare (MNW) solution — which selects an allocation that maximizes the product of utilities — is known to provide outstanding fairness guarantees when allocating divisible goods. And while it seems to lose its luster when applied to indivisible goods, we show that, in fact, the MNW solution is strikingly fair even in that setting. In particular, we prove that it selects alloca...
متن کاملFair Allocation of Indivisible Public Goods
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our model generalizes existing frameworks such as fair public decision making and participatory budgeting. We study a groupwise fairness notion called t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.07621 شماره
صفحات -
تاریخ انتشار 2017